Design of a Trajectory Tracking Controller for Coreless Tubular Linear Motor Using Model Predictive Controller

Authors

DOI:

https://doi.org/10.5281/zenodo.15104520

Keywords:

fcs-mpc, tubular linear motor, coreless linear motor

Abstract

This paper presents a cascaded control structure for a coreless tubular linear motor. The system includes position and speed loops employing PI controllers, and a current loop using Finite Control Set Model Predictive Control (FCS-MPC). This structure addresses challenges associated with low stator inductance, specifically its impact on current control. A simulation model was developed using MATLAB/Simulink. The simulation results demonstrate the effectiveness of the proposed solution in tracking the desired trajectory and minimizing the negative effects of low stator inductance on the current loop.

Downloads

Download data is not yet available.

References

Wakiwaka, H. (2024). Magnetic application in linear motor. in Handbook of Magnetic Material for Motor Drive Systems, pp. 1-16. Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-9644-3_54-1.

Gang, L. Y. U. (2020). Review of the application and key technology in the linear motor for the rail transit. Proceedings of the CSEE, 40(17), 5665-5675. doi:10.13334/j.0258-8013.pcsee.200488.

Jansen, J. W., Smeets, J. P. C., Overboom, T. T., Rovers, J. M. M., & Lomonova, E. A. (2014). Overview of analytical models for the design of linear and planar motors. IEEE Transactions on Magnetics, 50(11), 1-7. doi:10.1109/TMAG.2014.2328556.

Boldea, I., Tutelea, L. N., Xu, W., & Pucci, M. (2017). Linear electric machines, drives, and MAGLEVs: An overview. IEEE Transactions on Industrial Electronics, 65(9), 7504-7515. doi:10.1109/TIE.2017.2733492.

Shahid, M. B., Jin, W., Abbasi, M. A., Husain, A. R. B., Munir, H. M., Hassan, M., ... & Alghamdi, T. A. (2024). Model predictive control for energy efficient AC motor drives: An overview. IET Electric Power Applications, 18(12), 1894-1920. https://doi.org/10.1049/elp2.12517.

Boldea, I. (2017). Electric generators and motors: An overview. CES Transactions on Electrical Machines and Systems, 1(1), 3-14. doi:10.23919/TEMS.2017.7911104.

Gieras, J. F., Piech, Z. J., & Tomczuk, B. (2018). Linear synchronous motors: Transportation and automation systems. CRC Press. https://doi.org/10.3390/en14092549.

Jang, S. M., Choi, J. Y., Cho, H. W., & Lee, S. H. (2005). Thrust analysis and measurements of tubular linear actuator with cylindrical halbach array. IEEE Transactions on Magnetics, 41(5), 2028-2031. doi:10.1109/TMAG.2005.846266.

Abdalla, I. I., Ibrahim, T., & Nor, N. M. (2018). Analysis of tubular linear motors for different shapes of magnets. IEEE Access, 6, 10297-10310. doi:10.1109/ACCESS.2017.2775863.

Bianchi, N., Bolognani, S., Corte, D. D., & Tonel, F. (2003). Tubular linear permanent magnet motors: An overall comparison. IEEE Transactions on Industry Applications, 39(2), 466-475. doi:10.1109/TIA.2003.809444.

Leandro, M., Bianchi, N., Molinas, M., & Ummaneni, R. B. (2019, May). Low inductance effects on electric drives using slotless permanent magnet motors: A framework for performance analysis. In 2019 IEEE International Electric Machines & Drives Conference (IEMDC), pp. 1099-1105. IEEE. doi:10.1109/IEMDC.2019.8785241.

Kang, G., & Nam, K. (2005). Field-oriented control scheme for linear induction motor with the end effect. IEE Proceedings-Electric Power Applications, 152(6), 1565-1572. https://doi.org/10.1049/ip-epa:20045185.

Cui, L., Zhang, H., & Jiang, D. (2019). Research on high efficiency V/f control of segment winding permanent magnet linear synchronous motor. IEEE Access, 7, 138904-138914. doi:10.1109/ACCESS.2019.2930047.

Atencia, J., Martinez-Iturralde, M., Martinez, G., Rico, A. G., & Florez, J. (2003, June). Control strategies for positioning of linear induction motor: tests and discussion. in IEEE International Electric Machines and Drives Conference, 3, pp. 1651-1655. IEEE. doi:10.1109/IEMDC.2003.1210673.

Yu, L., Huang, J., Luo, W., Chang, S., Sun, H., & Tian, H. (2023). Sliding-mode control for PMLSM position control—A review. Actuators 12, 31. https://doi.org/10.3390/act12010031.

Shao, K., Zheng, J., Wang, H., Wang, X., Lu, R., & Man, Z. (2021). Tracking control of a linear motor positioner based on barrier function adaptive sliding mode. IEEE Transactions on Industrial Informatics, 17(11), 7479-7488. doi:10.1109/TII.2021.3057832.

Liu, X., Wu, Q., Zhen, S., Zhao, H., Li, C., & Chen, Y. H. (2022). Robust constraint-following control for permanent magnet linear motor with optimal design: A fuzzy approach. Information Sciences, 600, 362-376. https://doi.org/10.1016/j.ins.2022.03.083.

Luo, M., Duan, J. A., & Yi, Z. (2023). Speed tracking performance for a coreless linear motor servo system based on a fitted adaptive fuzzy controller. Energies, 16(3), 1259. https://doi.org/10.3390/en16031259.

Liu, Z., Gao, H., Yu, X., Lin, W., Qiu, J., Rodríguez-Andina, J. J., & Qu, D. (2023). B-spline wavelet neural-network-based adaptive control for linear-motor-driven systems via a novel gradient descent algorithm. IEEE Transactions on Industrial Electronics, 71(2), 1896-1905. doi:10.1109/TIE.2023.3260318.

Wang, Z., Hu, C., Zhu, Y., He, S., Yang, K., & Zhang, M. (2017). Neural network learning adaptive robust control of an industrial linear motor-driven stage with disturbance rejection ability. IEEE Transactions on Industrial Informatics, 13(5), 2172-2183. doi:10.1109/TII.2017.2684820.

Ding, R., Ding, C., Xu, Y., & Yang, X. (2022). Neural-network-based adaptive robust precision motion control of linear motors with asymptotic tracking performance. Nonlinear Dynamics, 108(2), 1339-1356. https://doi.org/10.1007/s11071-022-07258-0.

Cheema, M. A. M., & Fletcher, J. E. (2020). Advanced direct thrust force control of linear permanent magnet synchronous motor. Springer International Publishing. https://doi.org/10.1007/978-3-030-40325-6.

Downloads

Published

2025-03-29

How to Cite

Thanh, N. T., Cuong, N. M., Hoang, D. D., & Ngan, L. T. T. (2025). Design of a Trajectory Tracking Controller for Coreless Tubular Linear Motor Using Model Predictive Controller. Applied Science and Engineering Journal for Advanced Research, 4(2), 1–7. https://doi.org/10.5281/zenodo.15104520

Issue

Section

Articles