Deep Neural Network Enhanced Adaptive Control for a Robotic Manipulator with Actuator Failures

Authors

  • Kannika Chaiwong Independent Researcher, Information & Communication Technologies, Asian Institute of Technology, Thailand
  • Lukas Pichler Independent Researcher, Faculty of Computer Science, Vienna University of Technology, Austria

DOI:

https://doi.org/10.5281/zenodo.14633657

Keywords:

robotic manipulator, actuator failures, adaptive control, deep neural networks, fault tolerance, robust control, trajectory tracking, lyapunov stability

Abstract

This paper presents a novel control strategy for a robotic manipulator subject to actuator failures. The proposed approach integrates a deep neural network (DNN) with an adaptive control framework to enhance robustness and fault tolerance. The manipulator dynamics are modeled using a rigid-body model, incorporating potential actuator malfunctions such as partial loss of effectiveness and complete failures. A robust adaptive controller is designed to stabilize the manipulator's motion despite these uncertainties. A DNN is then employed to estimate and compensate for the effects of actuator failures in real-time. Lyapunov stability analysis is conducted to guarantee the stability and convergence of the closed-loop system. Simulation results demonstrate the effectiveness of the proposed approach in achieving accurate trajectory tracking and maintaining stability in the presence of various actuator failures.

Downloads

Download data is not yet available.

References

Ke, X., Jiang, A., & Lu, N. (2016, July). Load profile analysis and short-term building load forecast for a university campus. in IEEE Power and Energy Society General Meeting (PESGM), pp. 1-5. IEEE.

Mo, K., Liu, W., Shen, F., Xu, X., Xu, L., Su, X., & Zhang, Y. (2024, May). Precision kinematic path optimization for High-DoF robotic manipulators utilizing advanced natural language processing models. in 5th International Conference on Electronic Communication and Artificial Intelligence (ICECAI), pp. 649-654. IEEE.

Zhang, Y., Mo, K., Shen, F., Xu, X., Zhang, X., Yu, J., & Yu, C. (2024, July). Self-adaptive robust motion planning for high dof robot manipulator using deep mpc. in 3rd International Conference on Robotics, Artificial Intelligence and Intelligent Control (RAIIC), pp. 139-143. IEEE.

Jiang, A. (2014). Building load analysis and forecasting--A case study of the building load of the North Carolina state university centennial campus.

Liu, R., Xu, X., Shen, Y., Zhu, A., Yu, C., Chen, T., & Zhang, Y. (2024). Enhanced detection classification via clustering svm for various robot collaboration task. arXiv preprint arXiv:2405.03026.

Zhang, Y., Zhu, M., Gui, K., Yu, J., Hao, Y., & Sun, H. (2024). Development and application of a monte carlo tree search algorithm for simulating da vinci code game strategies. arXiv preprint arXiv:2403.10720.

Zhang, Y., Leng, Q., Zhu, M., Ding, R., Wu, Y., Song, J., & Gong, Y. (2024). Enhancing text authenticity: A novel hybrid approach for AI-generated text detection. arXiv preprint arXiv:2406.06558.

Zhang, Y., Gong, Y., Cui, D., Li, X., & Shen, X. (2024). Deepgi: An automated approach for gastrointestinal tract segmentation in mri scans. arXiv preprint arXiv:2401.15354.

Tan, L., Liu, S., Gao, J., Liu, X., Chu, L., & Jiang, H. (2024). Enhanced self-checkout system for retail based on improved YOLOv10. Journal of Imaging, 10(10), 248.

Zhu, M., Zhang, Y., Gong, Y., Xing, K., Yan, X., & Song, J. (2024). Ensemble methodology: Innovations in credit default prediction using lightgbm, xgboost, and localensemble. arXiv preprint arXiv:2402.17979.

Jiang, A. A simplified dynamic model of DFIG-based wind generation for frequency support control studies.

Mo, K., Chu, L., Zhang, X., Su, X., Qian, Y., Ou, Y., & Pretorius, W. (2024). DRAL: Deep reinforcement adaptive learning for multi-UAVs navigation in unknown indoor environment. arXiv preprint arXiv:2409.03930.

Mo, K., Liu, W., Xu, X., Yu, C., Zou, Y., & Xia, F. (2024). Fine-tuning gemma-7B for enhanced sentiment analysis of financial news headlines. arXiv preprint arXiv:2406.13626.

Jiang, A., Mo, K., Fujimoto, S., Taylor, M., Kumar, S., Dimitrios, C., & Ruiz, E. (2024). Maximum solar energy tracking leverage high-DoF robotics system with deep reinforcement learning. arXiv preprint arXiv:2411.14568.

Zhang, Y., Chu, L., Xu, L., Mo, K., Kang, Z., & Zhang, X. (2024). Optimized coordination strategy for multi-aerospace systems in pick-and-place tasks by deep neural network. arXiv preprint arXiv:2412.09877.

Mahmon, N. A., & Ya'acob, N. (2014, August). A review on classification of satellite image using Artificial Neural Network (ANN). in IEEE 5th Control and System Graduate Research Colloquium, pp. 153-157.

Kadhim, M. A., & Abed, M. H. (2020). Convolutional neural network for satellite image classification. Intelligent Information and Database Systems: Recent Developments, 11, 165-178.

Luzi, A. R., Peaucelle, D., Biannic, J. M., Pittet, C., & Mignot, J. (2014). Structured adaptive attitude control of a satellite. International Journal of Adaptive Control and Signal Processing, 28(7-8), 664-685.

Nair, A. P., Selvaganesan, N., & Lalithambika, V. R. (2016). Lyapunov based PD/PID in model reference adaptive control for satellite launch vehicle systems. Aerospace Science and Technology, 51, 70-77.

Wang, Z., Khorrami, F., & Grossman, W. (2000, June). Robust adaptive control of formation keeping for a pair of satellites. in Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No. 00CH36334), 2, pp. 834-838. IEEE.

Nguyen-Huynh, T. C., & Sharf, I. (2013). Adaptive reactionless motion and parameter identification in postcapture of space debris. Journal of Guidance, Control, and Dynamics, 36(2), 404-414.

De Queiroz, M. S., Kapila, V., & Yan, Q. (2000). Adaptive nonlinear control of multiple spacecraft formation flying. Journal of Guidance, Control, and Dynamics, 23(3), 385-390.

Lipeng, L., Xu, L., Liu, J., Zhao, H., Jiang, T., & Zheng, T. (2024). Prioritized experience replay-based ddqn for unmanned vehicle path planning. arXiv preprint arXiv:2406.17286.

Nair, R. R., Behera, L., Kumar, V., & Jamshidi, M. (2014). Multisatellite formation control for remote sensing applications using artificial potential field and adaptive fuzzy sliding mode control. IEEE Systems Journal, 9(2), 508-518.

Shimoga, K. B. (1996). Robot grasp synthesis algorithms: A survey. The International Journal of Robotics Research, 15(3), 230-266.

Gasbarri, P., & Pisculli, A. (2015). Dynamic/control interactions between flexible orbiting space-robot during grasping, docking and post-docking manoeuvres. Acta Astronautica, 110, 225-238.

Hirzinger, G., Landzettel, K., Brunner, B., Fischer, M., Preusche, C., Reintsema, D., ... & Steinmetz, B. M. (2004). DLR's robotics technologies for on-orbit servicing. Advanced Robotics, 18(2), 139-174.

Albrecht, L. J., Baumgartner, J. C., & Marshall, J. G. (2004). Evaluation of apical debris removal using various sizes and tapers of ProFile GT files. Journal of endodontics, 30(6), 425-428.

Dyskin, A. V., Estrin, Y., Pasternak, E., Khor, H. C., & Kanel-Belov, A. J. (2005). The principle of topological interlocking in extraterrestrial construction. Acta Astronautica, 57(1), 10-21.

Huebner, K., Ruthotto, S., & Kragic, D. (2008, May). Minimum volume bounding box decomposition for shape approximation in robot grasping. in IEEE International Conference on Robotics and Automation, pp. 1628-1633. IEEE.

Downloads

Published

2024-11-30

How to Cite

Chaiwong, K., & Pichler, L. (2024). Deep Neural Network Enhanced Adaptive Control for a Robotic Manipulator with Actuator Failures. Applied Science and Engineering Journal for Advanced Research, 3(6), 65–68. https://doi.org/10.5281/zenodo.14633657