Enhancing Energy Efficiency in Green Buildings through Artificial Intelligence
DOI:
https://doi.org/10.5281/zenodo.13948759Keywords:
artificial intelligence (ai), energy efficiency, green building design, carbon emissions reductionAbstract
Artificial Intelligence (AI) is poised to revolutionize the architectural design and energy management of green buildings, offering significant advancements in sustainability and efficiency. This paper explores the transformative impact of AI on improving energy efficiency and reducing carbon emissions in commercial buildings. By leveraging AI algorithms, architects can optimize building performance through advanced environmental analysis, automation of repetitive tasks, and real-time data-driven decision-making. AI facilitates precise energy consumption forecasting and integration of renewable energy sources, enhancing the overall sustainability of buildings. Our study demonstrates that AI can reduce energy consumption and CO2 emissions by approximately 8% and 19%, respectively, in typical mid-size office buildings by 2050 compared to conventional methods. Further, the combination of AI with energy efficiency policies and low-emission energy production is projected to yield reductions of up to 40% in energy consumption and 90% in CO2 emissions. This paper provides a systematic approach for quantifying AI's benefits across various building types and climate zones, offering valuable insights for decision-makers in the construction industry.
Downloads
References
Li, S., Lin, R., & Pei, S. (2024). Multi-modal preference alignment remedies regression of visual instruction tuning on language model. arXiv preprint arXiv:2402.10884.
Li, S., & Tajbakhsh, N. (2023). Scigraphqa: A large-scale synthetic multi-turn question-answering dataset for scientific graphs. arXiv preprint arXiv:2308.03349.
Liu, H., Xie, R., Qin, H., & Li, Y. (2024). Research on dangerous flight weather prediction based on machine learning. arXiv preprint arXiv:2406.12298.
Liu, H., Shen, F., Qin, H., & Gao, F. (2024). Research on flight accidents prediction based back propagation neural network. arXiv preprint arXiv:2406.13954.
Lai, S., Feng, N., Sui, H., Ma, Z., Wang, H., Song, Z., ... & Yue, Y. (2024). FTS: A framework to find a faithful timesieve. arXiv preprint arXiv:2405.19647.
Wang, H., Li, J., & Li, Z. (2024). AI-generated text detection and classification based on BERT deep learning algorithm. arXiv preprint arXiv:2405.16422.
Zhang, X., Xu, L., Li, N., & Zou, J. (2024). Research on credit risk assessment optimization based on machine learning.
Huang, D., Xu, L., Tao, W., & Li, Y. (2024). Research on genome data recognition and analysis based on louvain algorithm.
Huang, D., Liu, Z., & Li, Y. (2024). Research on tumors segmentation based on image enhancement method. arXiv preprint arXiv:2406.05170.
Li, B., Zhang, X., Wang, X. A., Yong, S., Zhang, J., & Huang, J. (2019, April). A feature extraction method for daily-periodic time series based on AETA electromagnetic disturbance data. in Proceedings of the 2019 4th International Conference on Mathematics and Artificial Intelligence, pp. 215-219.
Li, B., Zhang, K., Sun, Y., & Zou, J. (2024). Research on travel route planning optimization based on large language model.
Li, B., Jiang, G., Li, N., & Song, C. (2024). Research on large-scale structured and unstructured data processing based on large language model.
Yang, J., Qin, H., Por, L. Y., Shaikh, Z. A., Alfarraj, O., Tolba, A., ... & Thwin, M. (2024). Optimizing diabetic retinopathy detection with inception-V4 and dynamic version of snow leopard optimization algorithm. Biomedical Signal Processing and Control, 96, 106501.
Zhang, Y., Qu, T., Yao, T., Gong, Y., & Bian, X. (2024). Research on the application of BIM technology in intelligent building technology. Applied and Computational Engineering, 61, 29-34.
Chen, Z., Ge, J., Zhan, H., Huang, S., & Wang, D. (2021). Pareto self-supervised training for few-shot learning. in Proceedings of the IEEE/CVF Conference on Computer vision and Pattern Recognition, pp. 13663-13672.
Zhou, Q. (2024). Application of black-litterman bayesian in statistical arbitrage. arXiv preprint arXiv:2406.06706.
Zhou, Q. (2024). Portfolio optimization with robust covariance and conditional value-at-risk constraints. arXiv preprint arXiv:2406.00610.
Yaghjyan, L., Heng, Y. J., Baker, G. M., Bret-Mounet, V., Murthy, D., Mahoney, M. B., ... & Tamimi, R. M. (2022). Reliability of CD44, CD24, and ALDH1A1 immunohisto chemical staining: Pathologist assessment compared to quantitative image analysis. Frontiers in Medicine, 9, 1040061.
Rosner, B., Glynn, R. J., Eliassen, A. H., Hankinson, S. E., Tamimi, R. M., Chen, W. Y., ... & Tworoger, S. S. (2022). A multi-state survival model for time to breast cancer mortality among a cohort of initially disease-free women. Cancer Epidemiology, Biomarkers & Prevention, 31(8), 1582-1592.
Gupta, S., Motwani, S. S., Seitter, R. H., Wang, W., Mu, Y., Chute, D. F., ... & Curhan, G. C. (2023). Development and validation of a risk model for predicting contrast-associated acute kidney injury in patients with cancer: evaluation in over 46,000 CT examinations. American Journal of Roentgenology, 221(4), 486-501.
Shimizu, S., Nakai, K., Li, Y., Mizumoto, M., Kumada, H., Ishikawa, E., ... & Sakurai, H. (2023). Boron neutron capture therapy for recurrent glioblastoma multiforme: imaging evaluation of a case with long-term local control and survival. Cureus, 15(1).
Kumada, H., Li, Y., Yasuoka, K., Naito, F., Kurihara, T., Sugimura, T., ... & Sakae, T. (2022). Current development status of iBNCT001, demonstrator of a LINAC-based neutron source for BNCT. Journal of Neutron Research, 24(3-4), 347-358.
Zheng, Q., Yu, C., Cao, J., Xu, Y., Xing, Q., & Jin, Y. (2024). Advanced payment security system: XGBoost, CatBoost and SMOTE integrated. arXiv preprint arXiv:2406.04658.
Yu, C., Jin, Y., Xing, Q., Zhang, Y., Guo, S., & Meng, S. (2024). Advanced user credit risk prediction model using LightGBM, XGBoost and Tabnet with SMOTEENN. arXiv preprint arXiv:2408.03497.
Haowei, M., Ebrahimi, S., Mansouri, S., Abdullaev, S. S., Alsaab, H. O., & Hassan, Z. F. (2023). CRISPR/Cas-based nanobiosensors: A reinforced approach for specific and sensitive recognition of mycotoxins. Food Bioscience, 56, 103110.
Yu, C., Xu, Y., Cao, J., Zhang, Y., Jin, Y., & Zhu, M. (2024). Credit card fraud detection using advanced transformer model. arXiv preprint arXiv:2406.03733.
Ma, H., Xu, C., & Yang, J. (2023). Design of fine life cycle prediction system for failure of medical equipment. Journal of Artificial Intelligence and Technology, 3(2), 39-45.
Restrepo, D., Wu, C., Cajas, S. A., Nakayama, L. F., Celi, L. A. G., & Lopez, D. M. (2024). Multimodal deep learning for low-resource settings: a vector embedding alignment approach for healthcare applications. medRxiv, 2024-06.
Restrepo, D., Wu, C., Vásquez-Venegas, C., Nakayama, L. F., Celi, L. A., & López, D. M. (2024). DF-DM: A foundational process model for multimodal data fusion in the artificial intelligence era. Research Square.
Li, J., Wang, Y., Xu, C., Liu, S., Dai, J., & Lan, K. (2024). Bioplastic derived from corn stover: Life cycle assessment and artificial intelligence-based analysis of uncertainty and variability. Science of The Total Environment, 174349.
Xiao, J., Wang, J., Bao, W., Deng, T., & Bi, S. (2024). Application progress of natural language processing technology in financial research. Financial Engineering and Risk Management, 7(3), 155-161.
Guan, Bo, Jin Cao, Bingjie Huang, Zhuoyue Wang, Xingqi Wang, and Zixiang Wang. (2024). Integrated method of deep learning and large language model in speech recognition.
Moukheiber, D., Restrepo, D., Cajas, S. A., Montoya, M. P. A., Celi, L. A., Kuo, K. T., ... & Kuo, P. C. (2024). A multimodal framework for extraction and fusion of satellite images and public health data. Scientific Data, 11(1), 634.
Wu, C., Restrepo, D., Nakayama, L. F., Ribeiro, L. Z., Shuai, Z., Barboza, N. S., ... & Andrade, R. E. (2024). mBRSET: A portable retina fundus photos benchmark dataset for clinical and demographic prediction. medRxiv, 2024-07.
Cajas, S. A., Restrepo, D., Moukheiber, D., Kuo, K. T., Wu, C., Chicangana, D. S. G., ... & Celi, L. A. A multi-modal satellite imagery dataset for public health analysis in Colombia.
Wu, C., Yang, X., Gilkes, E. G., Cui, H., Choi, J., Sun, N., ... & Nakayama, L. (2023, October). De-identification and obfuscation of gender attributes from retinal scans. In: Workshop on Clinical Image-Based Procedures, pp. 91-101. Cham: Springer Nature Switzerland.
Published
How to Cite
Issue
Section
ARK
License
Copyright (c) 2024 Zhang Feng, Minyue Ge, Qian Meng
This work is licensed under a Creative Commons Attribution 4.0 International License.
Research Articles in 'Applied Science and Engineering Journal for Advanced Research' are Open Access articles published under the Creative Commons CC BY License Creative Commons Attribution 4.0 International License http://creativecommons.org/licenses/by/4.0/. This license allows you to share – copy and redistribute the material in any medium or format. Adapt – remix, transform, and build upon the material for any purpose, even commercially.