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ABSTRACT 

One particularly significant technology for deterrence of many chronic diseases is the constant plus real time tracking system, 

which is made possible through IoT and human computer interaction. Big data streaming stays the enormous volume of data 

that wearable medical procedures with sensors, healthcare clouds as well as mobile applications constantly produce. The 

increased pace of data collecting makes it challenging to gather, process as well as analyses such massive data sets in actual 

time in order to respond quickly in an emergency situation and unearth the hidden value. To offer an effective and scalable 

solution, real-time large data stream processing is therefore significantly needed. This work suggests a novel architecture for a 

big data based real time health prestige prediction as well as analytics system to address this problem. The system focuses on 

using a disseminated ML model to analyze health data events that are streamed into Spark via Kafka topics. First, we replace 

Hadoop MapReduce with Spark to produce a parallel, distributed, scalable, and rapid decision tree algorithm, which develops 

constrained for the real time computation. Second, this model is utilized to stream data from various sources that deal with 

numerous diseases in order to forecast health status. It is used to forecast health status using streaming data commencing 

distributed sources that represent various disorders. 
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I. INTRODUCTION 
 

Our time, which spans the former two decades, can be categorized as the "age of big data," in which digital data 

stands playing an ever-increasing role in a variety of industries, including society, research, health, and technology. Numerous 

domains and sources, including streaming machines, extraordinary throughput equipment, sensor networks, mobile 

applications, and each domain, particularly the healthcare industry, have generated and collected a significant amount of the 

data. Big data remains represented by this large size of data [1]. When employing inadequate tools with sophisticated 

technology, storing, processing, displaying, and extracting knowledge across these huge and various data kinds has become 

difficult. “One of the most important technological challenges facing big data analytics is finding effective ways to obtain 

relevant information for varied user types”. The digital record of a patient's medical past is the most important data for 

healthcare analytics, and it is now being collected from a variety of clinical and non-clinical venues. 

Consequently, there are three primary difficulties in developing a scattered data system to handle massive data: The 

first issue is that it is challenging to gather data from dispersed areas outstanding to the heterogeneous and enormous number of 

data. Second, the fundamental issue with heterogeneous and large datasets is storage. Big data systems must store data while 

guaranteeing performance. “The third issue is related to big data analytics, more precisely the mining of massive datasets in  

real-time or almost real time that encompasses modelling, visualization, prediction, and optimization [2]”. These issues 

necessitate an innovative processing paradigm because the existing data management solutions are incapable of handling the 

diverse or real-time nature of the data. “However, traditional relational database management systems (RDBMS), such as 

MySQL, are largely responsible for organized data administration”.  These conventional systems don't support unstructured or 

partially organized data in any way. From the standpoint of scalability, characteristic RDBMS ascending for parallel hardware 

management as well as fault tolerance frequently fails when the data size increases, making it unsuitable for managing rising 

data. The research community has undertaken numerous efforts to address the problems related with enormous besides diverse 

data storing, such that NoSQL database management systems, which stay convenient after working with a lot of data when the 

data's nature organizes not need a relational model[3] [4]. 

MapReduce [5] remains the parallel dispensation procedure that combines the Map in addition to Reduce operations 
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to handle large amounts of disseminated data. An inability of MapReduce to run iterative algorithms effectively is one of its 

main drawbacks. Iterative processing is not intended for MapReduce. Hadoop is a batch processing system that uses the 

MapReduce programming paradigm for the disseminated storage and processing of enormous quantities of data. It proposals a 

distributed storage solution with the Hadoop Distributed File System, which is as well precise fault tolerant. Hadoop only 

enables batch processing; this one cannot be meant for in memory computing or real time stream processing, nor is it always 

simple to apply the MapReduce paradigm to all issues. The amount of data being processed will determine how quickly the 

outcome will appear. In contrast, stream computing stresses data velocity and involves continuous data input and output. “Real 

time computing, distributed messaging, high throughput, and low latency processing are all features of Big Data Streaming 

Computing”. The main necessity of big data analytics in healthcare is the ability to extract facts from huge amounts of data, 

and BDSC is a promising option due to its massively parallel processing architectures. 

Medical procedures and scholarly research have started to advance significantly as a result of the quick growth of 

massive data analysis. Huge amounts of heterogeneous, structured, in addition unstructured data produced by the present 

healthcare schemes can now be collected, managed, analyzed, and absorbed with the use of tools [6]. 

We have built an explanation in the healthcare with real time health eminence estimate use case established on the 

issues the healthcare system is facing. This system is built on the NoSQL Cassandra, Spark streaming, Spark MLlib, Kafka 

data streaming, and Apache Zeppelin technologies. Kafka's producers generate many message streams, which are subsequently 

processed at Spark streaming using machine learning and stored in a distributed storage NoSQL for analytics and visualization. 

The quality of patient monitoring is improved in healthcare by efficient data processing 

 

II. PROPOSED HEALTH STATUS PREDICTION AND ANALYTICS SYSTEM 

ARCHITECTURE 
 

The suggested solution combines Spark streaming and Kafka streaming to provide a data processing and monitoring 

application. Real time data received by linked devices will be processed by this application and stored for real-time analytics. 

“The proposed system's architecture is shown in Figure 1 First, Kafka manufacturers continually generate a stream of data 

messages that are collected by Kafka streaming; this stream is modelled by a subject that stretches names to various diseases”. 

 

 
Figure1: Real-time health status prediction and analytics system architecture 

 

The information will be regained from the database using Apache Zeppelin, as well as a dashboard will be created that 

shows the data in real time charts, lines, as well as tables. According to the suggested system design, it is possible to analyses 

monitor data in real-time and notify healthcare professionals of changes in a patient's status. By setting times between updates, 

the data will be automatically renewed. The subsections that follow provide more specific flow. 
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III. SOURCES OF DATA 
 

The IoT is a network of physical objects as well as other things that are entrenched with electronics, intelligent 

clothes, software and apps, sensors, as well as network connectivity in order to gather and share data with one another or with 

data center systems. The data produced by wearable health monitors, which are widely available in households, is of a great 

volume and random character, necessitating analysis with the Big Data Analytic system in directive to comprehend user 

communication patterns or remove the necessary information. Health related IoT technology will account for 40% of all IoT 

connected technology by 2020 [7]. 

 

 
 

Figure2: Activity flow for the suggested system 

 

By dropping inefficiencies, containing costs, and saving lives, the fusion of medicine as well as information 

technology, like the medical informatics, will revolutionize healthcare as we currently know it. “In the event of a medical 

emergency like heart disease, diabetes, or many other chronic conditions, real-time monitoring via IoT can save lives”. There 

are several sources accessible today that track health indicators regularly. The workflow for the suggested system with various 

data sources is shown in Figure 2. 

 

IV. KAFKA REAL TIME DATA COLLECTION 
 

Since amount of data engendered in the healthcare industry is increasing exponentially, management of this data 

through Spark alone converts a difficult effort, whereas Kafka is made expressly for managing streaming data. It has therefore 

been incorporated into our system. The data collection block in the suggested system architecture is used to gather data on a 

person's health from dispersed sources and many diseases utilizing various devices combined with telemedicine and telehealth. 

This group continuously gathers, sorts, and manages clinical data about the patient. It enables us to group streaming data 

according to the relevant topic (kind of ailment) where records are released. Kafka's real-time data collection offers an 

unmatched solution for efficient and reliable data processing 

 

V. CASE DATASETS UTILIZATION 
 

Two datasets have been used to put the proposed model for this study into practice. The dataset we secondhand for 

the diabetic data analysis was obtained since the Kaggle [8] website, which offers data scientist’s online datasets with the goal 

of identifying and easily examining exposed data. “The diabetes dataset has 15,000 records as well as nine attributes, with 8  

of those being pregnancies, blood pressure, skin thickness, insulin, bmi, diabetes pedigree function, age, plus one of two 

outcomes: whether the patient is diagnosed with diabetes, which is denoted by a 1 or a 0, or not, which is denoted by a 0”. 
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Table 1: Description of the heart disease dataset attributes 

 
 

The processed one is the second. It was used and evaluated to use Cleveland data from the Heart Disease (HD) 

database. There are 303 records in this tagged dataset, and there are 14 attributes shown in Table. Numerous machine learning 

research projects used it. We consume built a categorized dataset with qualities for each observation of heart illness, where the 

class label quality is marked with 2 classes. “A binary class dataset was created by changing the values of the class label 

attribute to simply 0 and 1, where value 1 denotes the existence of heart disease in place of values 1, 2, 3, and 4, and value 0 

denotes the absence of heart illness”. Datasets are evaluated in this module utilizing the Spark environment and a predictive  

analysis technique. 

 

VI. SPARK IMPLEMENTATION OF PARALLEL DECISION TREE 
 

Afterward gathering data on different diseases after many disseminated sources, a classification model that can 

categories a user's qualities in the absence or presence of sickness must be built. One key method of data mining that can be 

used to uncover hidden information is categorization. A newly presented element is classified by looking at its qualities and 

being grouped into one of a specified set of classes. For classification and regression issues, DT are frequently utilized. Due to 

its ease of use, operationalization, interpretation, and extension to multiclass classification settings, DT are attractive methods 

for machine learning applications involving classification. The prediction was made using DT, which is supported for binary 

and multiclass classification by Spark's machine MLlib. 

The ML model termed a DT splits the data into groups. A dual split recruits the partitioning process, which lasts until 

no more splits are likely. A DT is built using recursive partitioning, which involves dividing or not splitting each node in turn. 

The best split among all potential splits is chosen for each partition. “A specific criterion, such as Gini impurity and entropy, 

forms the basis for the divide. Based on the node's impurity, the homogeneity of the label is measured at the node level”. The 

implementation currently offers Gini and Entropy as two classification impurity measures. 

 

 

 

 

 

 

 

 

 

 



Applied Science & Engineering Journal for Advanced Research                        Peer Reviewed and Refereed Journal 

ISSN (Online): 2583-2468 

Volume-3 Issue-1 || January 2024 || PP. 20-31                                                           DOI: 10.5281/zenodo.10578916 

 

https://asejar.singhpublication.com  24 | P a g e  

Algorithm 1: 

 
“The most well-known DT implementation is C4.5, which was created by J. Ross Quinlan, [9] and served as the 

default algorithm for DT on the Spark, sharing a parallel concept with C4.5 on MapReduce as shown in Algorithm 1”.  The 

entropy of feature S in this algorithm is determined as follows: 
 

 
“P (S, j) is nothing but the proportion of examples in S which are allocated to the jth class, and it indicates the 

proportion of instances in S that have the jth class label. C stands for the numeral of classes”. 

 

 
“A data required following attribute S splitting, where values Ts is the set of S values in T, Ts is the subset of T 

caused by S, and Ts, v is the subset of T where attribute S has a value of v. Information gain”. 
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It calculates the information gain following attribute S-based segmentation. According to this definition, the qualities 

S's information gain ratio is: 

 
SplitInfo is defined as follows: 

 
Therefore, “a suitable as well as parallel model for health status prediction in a big data scenario utilizing Spark is 

required and this makes a C4.5 model edition additional crucial. Using Spark, C4.5 parallelization is carried out in this work”. 

Figure shows the pseudo code for C4.5 on Spark. 

 

 
Figure 3: C4.5 implementation on Spark 

 

First, we access the cluster using SparkContext. Using the text File () function, data is loaded into an RDD. The 

contribution training dataset is treated by way of a text file RDD on Spark (). The RDD is cached using the cache () method, 

preventing the need for additional computation. Another transformation function in Spark is the flatMap function, which is 

just about identical to this map purpose in the MapReduce outline. “In the MapReduce architecture, the reduceByKey 

function merges the data for each key using the supplied function and returns an RDD”. It is a parallel variant of reduce. The 

procedures to train as well as test the DT in a disseminated atmosphere based on Spark are represented by Algorithm. The DT 
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implementation in this work is carried out using MLlib, while Spark streaming handles the Kafka topic data streams.  

 

 
Figure 4: Machine learning process 

 

VII. RESULT AND ANALYSIS 
 

Performance Evaluation of Machine Learning Model 

30% data will be used for the testing, and the left over seventy percent will be secondhand to train the model from the 

two datasets. These data have been used to train DT. “In this application, an estimated set of split candidates are intended over 

a sampled portion of data, as well as the ordered splits create bins, the maxBins parameter specifies the extreme number of 

such bins, and the maxDepth parameter specifies the maximum depth of the DT”. Sorting feature values is expensive for large 

distributed datasets. 

Different DT models consume been weighed by means of the dataset underneath with variable parameters for 

maxDepth, maxBins, as well as impurity indices, also the sorting exactness values are intended in apiece case. The greater 

accuracy prediction stabilizes when the number of maxBins and maxDepth take the values shown in Table 4 thanks to the 

testing dataset and model error analysis, which avoids the detrimental impacts of both under fitting and overfitting. Figure 8 

displays in a bar graph how well the DT implementation utilizing Spark performed. 

 Receiver Operating Characteristic Curve: is unique of tfle most significant as well as effective metrics of evaluating 

tfle excellence or presentation of diagnostic tests. The ROC curve is reinforced by MLlib. 

 Classification Accuracy: This is measured by the proportion of accurate predictions to all other predictions. The 

classification accuracy for tfle datasets is measured in this work by means of the tfle equation: 

 

Table 2: carried out experiments 
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Table 3: Classification results 

 
 

 
Figure 5: Machine Learning Results 

 

 
In such a way that TP, TN, FP, FN as well as FP represent the values of true positives, true negatives, and false 

positives respectively. Sensitivity is the percentage of positives that are actually properly recognized, whereas specificity 

measures the percentage of true negatives that are correctly detected. These were produced by: 

 
We evaluated the performance of our ML model on dual fictional data sets. Actual results demonstrate how effective 

and scalable our use of Spark to implement the DT algorithm is rendering to the table above, the proposed model provides 

consistent and excellent predictions. 

 

Apache Spark vs Weka Performance 

Spark speed can be significantly quicker than additional older technologies, particularly in iterative ML, with to 

features like in memory processing. Additional data records consume been replicated in order to demonstrate the effectiveness 

of the Spark based prediction system in expressions of the time required to train and test the machine learning model on huge 
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datasets. Scikitlearn, a Python package for ML that offers purposes for creating a set of test problems, is secondhand to run 

the simulation. 

 
Figure 6: Model building time is compared between DT using Spark and regular DT for execution times. 

 

 
Figure 7: Model testing time is compared between DT using Spark and traditional DT. 

 

DT execution times using the Spark and Weka tools were compared in instruction to assess and show the scalability 

of this technique. In this situation, we increase the amount of records in order to have a large enough database. Then, using 

the identical technique in Weka and Scala, the rapidity of the DT algorithm was measured as well as compared. In fact, Weka 

and DT's operating times in the cluster (Spark) were compared. The presentation judgement of the implementation of DT 

utilizing Spark as well as Weka is shown in a bar chart in Figure 6 and 7. In this simulation, employing Weka's 

straightforward C4.5 does not enable model training when the amount of records is equivalent to or more than three million. 

The line as well as bar charts show that running the DT model using Spark is quicker than using the Weka tool. In 

contrast to Weka, which needs 185 seconds to train a model with four million records from a diabetic dataset, it only requires 

43.2 seconds. Additionally, it trains the model in 58.43 seconds as opposed to 274.36 seconds for Weka when using a dataset 

of 4 million records with heart disease. The proposed Spark based DT makes machine learning model testing and training 

faster. Due to disseminated computing on the cluster nodes and in memory computation, the parallel DT method of Spark 

Mllib achieves the finest scalability. Data processing with Spark MLlib takes less time since the workload is broken up into 

smaller jobs that are carried out on workers nodes. Spark offers the best means of implementing the suggested method to 

calculate health condition in real time, according to an examination of the findings obtained. 

Spark Based DT Scalability 

In this step it involves measuring the proposed Spark based C4.5 algorithm's performance in a disseminated parallel 

atmosphere. Dissimilar training dataset sizes as well as node counts are taken into consideration. We have two nodes, as was 

already indicated, and our training dataset contains between 100k and four million entries. 

We can perceive that the overall implementation time lowers as the number of nodes grows when the number of 

instances is two, three, and four million respectively. This suggests that the algorithm will run more quickly due to distribute 

computing the more nodes engaged in the computation. In contrast, because to the undistributed computing, in the 

conventional DT execution time utilizing Weka with two nodes stays steady. 
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Figure 8: Performance evaluation of DT with Spark on several nodes: duration of model construction 

 

 
Figure 9: Performance evaluation of DT with Spark on several nodes: duration of model testing 

 

 
Figure 10: Performance evaluation of DT for various nodes using Spark and Weka: construction time for the model. 

Thousand, Million 
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Figure 11: Performance evaluation of DT for various nodes using Spark and Weka: elapsed time for model testing. 

Thousand, Million 

 

Throughput 

First, the DT model was constructed and evaluated independently using different parameters including impurity, 

maxDepht, as well as maxBins; the smallest model fault is occupied into consideration based on the model's ability to 

accurately classify data. To use it in real time, an offline model has remained built as well as saved. In our instance, the data 

generators are two simulator programs, one for diabetes streams and the other for heart disease streams. We are only 

employing two producers for the purpose of simplicity. The Kafka data streaming module is in charge of handling the events 

streams while Kafka streaming captures all of these data events in real time as well as sends them to the Spark streaming 

application. The Spark streaming API is used by streaming applications to perform a series of transformations on data streams 

in order to anticipate a user's health state. The produced identity and attribute values for each instance were retrieved, and the 

extracted health attributes were subjected to a machine learning model. Each instance's specifics were saved in a Cassandra 

database table so they could be later queried. 

 

According to Fig 

 The cost of processing time increases as throughput increases. 

 The processing time decreases as we add more nodes. 

 If sufficient nodes are used, even if the volume of data is large, presentation may be close to the ideal level. For 

instance, if we use 2 nodes and have a throughput of 2.5 million records, the time it takes to complete the task is close 

to 2 s. When we custom a single node, an execution duration is close to three seconds. By adding more nodes, the 

execution time of the same output decreases. 

 Distributed streaming using Spark is a solid option for dealing with real-time issues. In particular, we handle big data 

issues, notably those connected to real-time prediction in the field of health care, by utilizing additional nodes. 

 

A data dashboard that retrieves information after the Cassandra database as well as presents it in charts as well as 

tables has been developed using Apache Zeppelin. The data is pushed to the web page in set intervals by this application using 

Angularjs as well as Spark SQL, ensuring that data is automatically refreshed. It is available from both desktop and mobile 

devices. In command to excerpt the crucial and useful information or to help practitioners understand user behavioral patterns, 

the database can be queried using a variety of different queries, such as the number of instances, the number of positive as well 

as negative cases, approximately statistics, and the status of a patient by his identifier. 

Our research focuses on using ML models with HCI to analyze streaming big data generated from a variety of illness 

sources. Kafka is used to manage the event streams then convert the healthcare data into information. Discussion of the 

experiment's findings leads to the conclusion that Spark is particularly suited for iterative algorithms that call for repeated data 

passes. It offers a quicker execution engine for processing that is distributed and streaming. The use of Spark in this system 

accelerates data processing more quickly than other conventional data mining tools. 

The primary distinction concerning the proposed system and conventional approaches to data analytics is that the 

latter analyze one instance at a time and are dependent on the volume of input data. On the other hand, this system, which is 

constructed on Dstream, which is a collection of RDD and each RDD represents one or additional instances, can procedure 

thousands of instances coming in each second in real-time. Additionally, the system supports big data processing, uses real 

time as well as distributed machine learning, handles incoming streams using Spark streaming rather than MapReduce, predicts 

multiple diseases at once based on the idea of Kafka topics, and offers quick real time classification, which is more significant 
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as the amount of produced data from devices, the cloud, as well as other sources is growing at an apparent rate. 

 

 
Figure 12: Performance evaluation: processing time 

 

VIII. CONCLUSION 
 

Volume of the healthcare data is expanding alarmingly quickly over time from numerous conflicting data sources. A 

streaming computing platform is required to enhance patient outcomes and commercialize real-time health status prediction 

systems. However, outdated information technology solutions integrating physical infrastructure as well as relational databases 

are no longer able to collect, process, store, and utilize this dizzying volume of data. Based on the difficulties previously 

described, classical information technology has numerous problems in scaling with parallel hardware, making it unsuitable for 

handling expanding data. In our research, a real time health status estimate and analytics system that was created using open 

source big data technologies is suggested and evaluated on a cluster. 

The integration of big data and human computer interaction holds immense potential for real-time disease prediction; however, 

its effectiveness must be balanced against concerns of privacy invasion and the ethical implications surrounding data collection 

and usage. 
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