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ABSTRACT    
A short pulse laser beam suffers self-pulse distortion due to combined effects of nonlinearity induced self-focusing and 

dispersion. Nonlinearity arises due to relativistic mass variation and ponderomotive force. As the beam propagates through 

plasma, beam width parameter  f decreases, so intensity of the beam increases. Self focusing of the beam takes place. As 

time passes, decrease in  f  is smaller and smaller, broadening of pulse takes place.  
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I.  INTRODUCTION 
 

In plasmas, where relativistic mass and density nonlinearities predominate, one observes frequency downshift and 

leads to relativistic self-focusing of the laser beam [1-3]. Paraxial ray theory [4-5] of relativistic and ponderomotive self-

focusing has been developed. Fedosejevs et al [6] have reported experiments on many gases including helium, hydrogen and 

nitrogen etc. They employed a fsTW 250,3.0  laser pulse focused to an intensity of 
217 ./103 cmW  They observed 

relativistic self-focusing in high density hydrogen gas.  

Frederick et al [07] have compared the importance of relativistic self-focusing in comparison with ponderomotive 

non-relativistic self-focusing at very high laser intensities. When laser intensity is high, ponderomotive self-focusing becomes 

dominant.  

Borghesi et al [08] have observed relativistic self-channeling of intense laser beams both experimentally and in 3D 

Particle in cell [PIC] simulations. In tunnel-ionizing gases, the laser undergoes radial divergence, frequency upshift [9, 10], 

ring formation [11] due to nonlinear refraction.  

Gibbon et al [[12] have experimentally studied relativistic self-focusing and self-channeling of an intense laser pulse 

in underdense plasma. Here, we study the self-focusing of intense short laser pulses in plasma dominated by relativistic mass 

nonlinearity along with change in electron density due to radial ponderomotive force. In section 2, we obtain coupled equations 

for amplitude and eikonal. In section 3, we solve the wave equation and obtain an analytical solution for the evolution of a laser 

pulse for general nonlinearity. In section 3(a), we discuss the case when laser intensity is moderate and nonlinearity is 

quadratic. In section 4, we discuss results. 

 

II.  COUPLED EQUATIONS FOR AMPLITUDE AND EIKONAL 
 

Consider the propagation of a linearly polarized intense laser pulse in plasma in z direction. At 0z , the electric 

field of the laser is 

   titrAx  exp,ˆE ,       

                                                                                    (1) 

For 0z , we will note later that  
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Laser imparts drift motion to electrons. Momentum balance and energy equations are: 
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If one treats the tzr ,,  variations of  A   to be small as compared to phase variations of E ,  the x  component of Eq.(3) gives  

.
i

eE
p x

x                                                                                                                           (5) 

The time average Lorentz factor is 
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and the drift velocity of electrons due to laser is 
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The laser also exerts a ponderomotive force on electrons, 

pe pF ,                                                                                                                        (8) 

In the equilibrium, the ponderomotive force on electrons balances the space charge force, 

,0 pe  leading to 
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From Poisson’s Equation, we obtain 
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The dielectric constant of the plasma can be written as 
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The wave equation governing the propagation of high amplitude electromagnetic wave is                                                                                    
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Taking rapid phase variation as 

    .exp,,ˆ kztitzrAx  E , where 
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Using above expressions in Equation (12), we get 
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We have ignored 
22 zA  and 

22 tA  by using WKB approximation. Now introducing, z , and ,
gv

z
t  where 
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If we consider the case, where
22

0  pfp zL  , with 
21

00  ctLp , the length of the pulse and fz , the characteristic 

length of self-focusing and neglect 
22  A term in Eq.(14a), then 
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If we introduce an eikonal  ikSAA exp0  and separate real and imaginary parts of Eq. (14b), we get 
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III.  SELF-FOCUSING 
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Substituting for 
2

0A  and S  in Eqs.(15) and (16), we get 
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In the first order approximation, we consider ,0  then 
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The next order of Eq. (18)  gives 
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Collecting second order terms of Eq. (19), we obtain 
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3(a) Quadratic Nonlinearity 

When laser intensity is moderate 12 a , the nonlinear part of permittivity simplifies to 
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Using this value in Eq. (21), we obtain 
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We take initial variation of G  as 
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We solve equation (22) for these parameters. Variation of beam width parameter versus time is shown in (c. f. Fig. 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Applied Science and Engineering Journal for Advanced Research 

ISSN (Online): 2583-2468 

Volume-1 Issue-4 || July 2022 || PP. 12-16                                                                         DOI: 10.54741/asejar.1.4.3 

 

www.asejar.org  16 | P a g e  

IV.  CONCLUSION & DISCUSSION 
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Figure 1: Variation of beam width parameter  f  versus relative time 
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As the beam propagates through plasma, beam width parameter  f decreases, so intensity of the beam increases. 

This is due to the convergence of the beam, the portion of the wavefront where intensity is maximum travels with minimum 

phase velocity while adjoining portions move with faster phase velocity, causing convergence of beam. Self focusing of the 

beam takes place. As time passes, decrease in  f  is smaller and smaller, broadening of pulse takes place. Hence due to 

ponderomotive and relativistic nonlinearities, broadening of the pulse takes place and intensity of the beam decreases due to 

temporal effect. 
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