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This study investigates the optimization of process parameters to enhance the compressive strength
of polyethylene terephthalate glycol (PETG) parts manufactured using Fused Deposition Modeling
(FDM). Compression test specimens were fabricated following ASTM D695 standards, with nozzle
temperature, infill density, layer height, and printing speed selected as the key input variables. A
three-level face-centered central composite design (FCCD) was employed to systematically evaluate
their individual and interactive effects on ultimate compressive strength (UCS). Experimental testing
revealed that higher infill density and reduced layer height significantly improved compressive
performance, with UCS reaching 106.25 MPa under baseline conditions. To further optimize results,
a hybrid Genetic Algorithm–Adaptive Neuro-Fuzzy Inference System (GA-ANFIS) framework was
implemented, enabling accurate prediction and intelligent optimization of compressive strength. The
optimized parameters—224.25 °C nozzle temperature, 88% infill density, 0.15 mm layer height, and
55 mm/s print speed—yielded a maximum UCS of 148.53 MPa, representing a 39.78% improvement
over baseline results. The findings demonstrate that intelligent hybrid optimization provides a robust
approach for tailoring FDM process parameters, thereby enhancing the structural reliability of PETG
components for engineering applications.
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1. Introduction

Fused Deposition Modeling (FDM) is a melt
extrusion-based Additive Manufacturing technology
for processing thermoplastics, composites, and
biomaterials [1]. By depositing two-dimensional
(2D) layers on a build platform, it can create flexible
function parts with complicated geometry from a
stereolithography (STL) file, which lowers assembly
costs [2]. Because of its exceptional chemical
resistance, transparency, high interlayer adhesion,
low shrinkage, impact strength, and suitability for
applications requiring elevated service temperatures
or food safety, PETG has become a highly versatile
thermoplastic within additive manufacturing,
particularly in the fused deposition modeling (FDM)
domain [3]. The compressive strength of PETG-
based FDM parts is greatly influenced by printing
conditions, as several investigations have
demonstrated. According to research on carbon
fiber-reinforced PETG, compressive performance is
significantly impacted by both infill pattern and
infilldensity; compressive strength increases
significantly as infill density rises. For example,
samples with a tri-hexagon design printed at 80%
infill density had a noteworthy compressive strength
of about 39.16 MPa, according to a different study, a
triangular infill pattern offers greater modulus and
compressive strength than alternative fill
techniques, and mechanical characteristics are
further enhanced by raising the infill density from
25% to 75% [4]. According to a study, infill density
is the key lever for increasing compressive strength
in PETG parts made using FDM in a cost-effective
way. Layer height still affects overall value, but
switching to 100% infill and 0.20 mm layer height
achieves the best possible balance between strength
and economy of production [5]. A linear elastic
stress-strain behavior up to near-yield was found in
a combined experimental and computational
research. Interestingly, X and Y examples showed
ductile, plastic deformation, but Z-direction
specimens failed in a brittle, delamination-
dominated way. Estimated compressive Young's
moduli were around 1329.5 MPa for X, 1117.9 MPa
for Y, and 1124.0 MPa for Z. Numerical simulations
predicted displacements within 4% of experimental
values, and an architecturally inspired "umbrella"
structure was printed and tested to validate these
findings. It sustained compressive loads (4,942 N in
Z, 2,930 N in X–Y) significantly above the Spanish
building-code requirement (~780 N) [6].

According to an experimental investigation, at a
nozzle temperature of 420 °C, the maximum
compression strength and strain of PEEK were
determined to be 164.4 MPa and 73%, respectively.
A layer height of 0.18 mm, a bed temperature of
130 °C, and an infill density of 100% were used
throughout the test. The mechanical performance
was much improved for the 10% carbon fiber-
reinforced PEEK that was produced under the
identical circumstances [7]. Response Surface
Methodology (RSM)—to methodically investigate the
effects of printing speed, nozzle temperature, and
layer thickness on the tensile and flexural strength
of PLA items that are FDM-printed. The ideal
parameters, according to the RSM model, would
provide peak tensile strength of 50.5479 MPa and
flexural strength of 95.0163 MPa. These parameters
were 0.2313 mm layer thickness, 208 °C nozzle
temperature, and 55.5 mm/s printing speed [8].
RSM, FIS (Fuzzy Inference System), and ANN
techniques are used to examine the combined
effects of layer thickness, shell width, and raster
width on dimensional accuracy. The tensile strength
of ABS, PETG, and multi-material test specimens the
latter created by alternating layers 50% ABS and
50% PETG using FDM is examined in this study in
relation to material density, infill density, and
extrusion temperature. An Artificial Neural Network
(ANN) and a hybrid Genetic Algorithm–Artificial
Neural Network (GA-ANN) model in MATLAB 16.0
were used to optimize 30 ASTM D638-(IV) standard
samples that were created under various conditions.
According to the findings, GA-ANN increased the
tensile strength by as much as 4.54% [9]. A study
revealed that a print speed of 50 mm/s, layer
thickness of 0.1 mm, extrusion temperature of 230
°C, and raster width of 0.6 mm were the most
effective ways to achieve the joint target of
minimizing both dimensional deviation and surface
roughness. ANFIS's prediction accuracy (mean error
= 9.33%) was found to be superior to that of the
RSM model (≈ 12.31%), according to comparative
study. ANOVA also showed that raster width and
layer thickness had the greatest influence on
surface and dimensional quality, whereas print
speed and temperature had more subtle but still
significant effects [10]. ANN-GA and RSM to
enhance the printed gels' physicochemical
characteristics and digestibility (PSGG). With an R2
of 99.98% against 93.99%, respectively, ANN-GA
performed better than RSM and determined
respectively,
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ANN-GA performed better than RSM and determined
that extrusion speed was the most important factor.
For both techniques, the ideal printing parameters
were an extrusion speed of 24 mm/s, a nozzle
diameter of 0.70 mm, and a nozzle height of 0.50
mm. Under these circumstances, PSGG showed
better digestibility, rising from 46.93% in unprinted
SGG to 51.52% in PSGG, as well as improved
thermal characteristics, as seen by changed
denaturation temperature and enthalpy [11].

In engineering applications in the consumer
electronics, automotive, and aerospace sectors,
compressive strength is crucial, especially for load-
bearing parts like structural supports where material
safety and dependability are crucial. Compression
testing aids in component design, quality control,
durability assurance, and material selection. The
mechanical performance of FDM-printed PETG
pieces is improved by increasing their compressive
strength. Because of its clarity, resilience to impact,
and compressive strength, FDM printed PETG may
be used for enclosures, device housings, and
lightweight supporting parts like orthopedic fixtures
or prosthesis. This work therefore seeks to make
two major contributions: (1) by enhancing process-
parameter optimization for FDM-printed PETG in
particular, and (2) by making it possible to fabricate
stronger, more reliable parts, increasing their
potential for use in engineering and manufacturing
in the future.

2. Materials and methods

PETG is a material that is frequently used in FDM 3D
printing. Because it validates PETG's biomaterial
safety qualities and makes it possible to create
strong parts because of its strong tensile, high
ductility, flexibility, heat resistance, and chemical
protection, it is suitable for prototypes, functional
components, pharmaceutical, and clinical
applications. The material properties of PETG shown
by the Table 1., which is used in 3D printing, has
qualities that are quite similar to ABS (great
temperature resistance, durability), and it is just as
simple to print as PLA. The chemical structure of
PETG (polyethylene terephthalate glycol) is shown in
Figure 1. The embossing process demonstrates
that PETG is transparent and resistant to
crystallization when exposed to high heat levels,
and that its photostability in the presence of
ultraviolet (UV) light decreases as the amount of
CHDM in the polymer structure increases.

PETG plastic is a popular choice for packaging
applications due to its transparency, impact
strength, and chemical resistance. PETG's impact
resistance, durability, and visual attractiveness
make it suitable for the demanding automotive
environment.).

Figure 1: Chemical formulation of PETG [12]

Table 1: PETG Material properties

The program Design Expert13 was used to create
the number of experimental runs, and a 2k factorial
design was employed to cut down on the number of
trails. The highest and lowest values of each input
element were categorized as high (+1) and low
(-1), respectively, to maintain a uniform range
across all components. Furthermore, the axial
points (high and low) and zero level (center points)
of each factor were considered. Furthermore, the
axial points (high and low) and zero level (center
points) of each factor were considered. A three-level
face-centered central composite design (FCCD) was
then used to statistically evaluate the primary and
interaction effects of the four process parameters on
compressive strength. The Table 2. Describe the
FDM input Printing Parameters with Defined Ranges.

Table 2: FDM Printing Parameters with Defined
Ranges
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Test specimens were designed using AutoCAD which
first saved the specimen design file with a .prt
extension before exporting it into a
stereolithographic file, or. STL format. The
generated .STL file was then uploaded to the
approaching software of the MAKERBOT MATHODX
printer to set the tool path and all process
parameters in line with the experimental design
matrix for component manufacture.

2.1 Test Specimen printing as per design of
experiment (DOE)

Following ASTM standard guidelines, the 20
compression test specimens were created using a
MakerBot Method X 3D printer which are visualize
by Figure 1(b) and subsequently put through a
universal testing equipment to determine their
compression resistance. The advanced MakerBot
Method X printer, shown in Figure 1(a), was used
in the fabrication process. To improve the test
samples' resistance to compression, the main input
parameters for fused deposition modeling (FDM),
including nozzle temperature, infill density, layer
height, and print speed, are being changed.

Printing process start withthe MakerBot Method X is
correctly configured and calibrated first. By Insert
the PETG filament into the filament section of the
printer. The Smart Spool technology of the Method X
will automatically identify the material and modify
the settings as necessary. To select the printing
parameter, use the MakerBot Print software to start
the printing process after configuring the print
parameters. The extruder and build plate will be
automatically heated to the specified temperatures
by Method X. Using the printer's touchscreen
interface, which offers real-time updates and
alarms, keep an eye on the print's development. Let
the item cool when printing is finished, then take it
off the construction plate. If required, remove any
extra material or support structures using the
proper instruments. Lightly sand the printed object's
surface for a smoother finish.

The experimental design summarized in Table 3
was structured to systematically investigate the
effects of key process parameters on the properties
of 3D-printed PETG specimens.

The table presents a series of experimental runs
based on a design of experiments (DOE) approach,
where the primary variables—nozzle temperature,
infill density, layer height, and print speed—were
each varied across predetermined levels, including
coded values for statistical analysis (such as -1, 0,
1, and center points m+, m−). For each
experimental run, specific parameter combinations
were assigned, with nozzle temperature ranging
from 210°C to 230°C, infill density from 50% to
70%, layer height from 0.1 mm to 0.3 mm, and
print speed from 45 to 65 mm/s. This approach
allows for the isolation and assessment of both
individual and interactive effects of process
parameters on the printed part’s quality, mechanical
performance, and consistency. Repetition of mid-
level and center-point experiments further increases
the reliability and statistical power of the analysis,
making this DOE a robust foundation for empirical
optimization of PETG 3D printing processing
conditions.

Figure 1(a): MakerBot Method X 3D Printer

Figure 1(b): ASTM Standard Compression 3D
printed Specimen
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Table 3: Design of experiment (DOE) in accordance
with Research plan

2.2 Compression testing and determination of
Ultimate compressive strength (UCS)

A compression test was conducted on a PETG
(polyethylene terephthalate glycol) specimens and
using a universal testing machine set to a speed of
5 mm/min and a displacement increment of 0.1
mm. The tested sample had a length of 15 mm and
a cross-sectional area of 150 mm². The system was
calibrated with a load cell capable of measuring up
to 20,042 N, and the test was conducted in peak
mode with defined high and low load limits (19,000
N and 100 N, respectively). The sample’s
mechanical response and ultimate capacity
acceptably met the specified criteria, and the test
status was marked as “Accepted.”

These results provide valuable insight into the
compressive behavior of PETG materials produced
under defined conditions, supporting data-driven
material characterization.

2.3 Genetic Algorithm–ANFIS Framework for
Training and Optimization

The GA-ANFIS hybrid technique turned out to be an
effective statistical data management methodology.
In this instance, the crucial task of data training was
assumed by the Adaptive Neuro-Fuzzy Inference
System (ANFIS),

which was then optimized using the Genetic
Algorithm (GA). ANFIS, which blends fuzzy systems'
inference mechanisms with neural networks'
learning capabilities, showed remarkable flexibility
in modifying its settings to get the required results.
To improve process parameters and improve or
maximize the UCS (Ultimate compressive strength)
of PETG parts, a hybrid modeling technique known
as GA-ANFIS was used in this work. When modeling
nonlinear systems, when conventional methods
might not be enough, ANFIS is very helpful. It uses
five different steps to analyze information:
transforming input values into fuzzy sets, applying
fuzzy rules, assessing the strength of the rules,
combining outputs to get a final, precise numerical
value. The ANFIS model was trained using
experimental data, considering four key FDM
process parameters—nozzle temperature, layer
height, infill density, and print speed—as inputs.
These parameters play a crucial role in determining
the compressive strength of the printed PETG
components. . The fuzzy controller's main objective
was to learn and maximize performance under
various circumstances. The membership functions
(MFs) were designed during the training phase using
the batch learning ANFIS approach, and the
backpropagation algorithm was used to refine the
Fuzzy Inference System (FIS) file. By reducing the
epoch error value, the training model's performance
was verified, showing that it was successfully
learning and reaching the intended results.
Following successful tuning, the FIS file was
combined with the GA to yield optimal outcomes.

2.4 Experimental Data Training and
Performance Evaluation Using GA-ANFIS

The Adaptive Neuro-Fuzzy Inference System
(ANFIS) is a hybrid model that combines the
learning capability of neural networks with the rule-
based reasoning of fuzzy logic. In this study, a
dataset of 20 samples (20×5 matrix) was imported
from MATLAB, consisting of four input parameters—
nozzle temperature, infill density, printing speed,
layer height and UCS as the output. A Sugeno-type
FIS was generated using grid partitioning, where
each input was represented by three membership
functions, resulting in 27 fuzzy rules. Training was
conducted with hybrid optimization (least squares
and backpropagation) over three epochs. To assess
the effect of membership function choice, different
FIS models were tested using the 11 built-in MF
types available in ANFIS, along with options for
custom MFs.
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Model performance was evaluated for custom MFs.
Model performance was evaluated in terms of
accuracy and error metrics, highlighting the impact
of MF selection on UCS prediction in the additive
manufacturing process.

3. Result and discussion

3.1 Compression Testing (UCS) Result Analysis

An extensive set of experiments (as per Table 4),
was conducted using the FCCCD approach, the
compressive testing specimen were fabricated using
the ASTM standard of D695 utilizing 20 different
combinations of input parameters such as Nozzle
temperature, Infill density, Layer height and printing
speed. The Ultimate compressive strength was
determined across each sample by UTM testing, the
sample which was 3d printed with four different
input parameters.

Table 4: Compressive strength analysis at input
parameters combinations

From the above data, it is evident that variations in
the input parameters significantly impact the
compressive strength of the samples. For example,
higher nozzle temperatures around 220°C combined
with higher infill densities (above 85%) and
moderate printing speeds tend to yield the highest
UCS values (e.g., Exp. Nos. 10 and 11 with UCS
exceeding 104 MPa). Conversely, lower infill
densities and/or extreme layer heights generally
produce lower compressive strengths.

The findings align with existing literature indicating
that higher infill density improves structural
integrity by increasing material volume, while
optimal nozzle temperature ensures proper melting
and fusion of the layers. Additionally, layer height
influences the bonding quality between layers,
impacting the overall load-bearing capacity.

From the above data, it is evident that variations in
the input parameters significantly impact the
compressive strength of the samples. For example,
higher nozzle temperatures around 220°C combined
with higher infill densities (above 85%) and
moderate printing speeds tend to yield the highest
UCS values (e.g., Exp. Nos. 10 and 11 with UCS
exceeding 104 MPa). Conversely, lower infill
densities and/or extreme layer heights generally
produce lower compressive strengths. The findings
align with existing literature indicating that higher
infill density improves structural integrity by
increasing material volume, while optimal nozzle
temperature ensures proper melting and fusion of
the layers. Additionally, layer height influences the
bonding quality between layers, impacting the
overall load-bearing capacity.

3.2 Developing optimization model through
GA-ANFIS using experimental data

The Neuro-Fuzzy Designer interface, as shown in
Figure 2(a), offers a comprehensive graphical
environment for the development and training of
ANFIS models in MATLAB. Users can import datasets
for training, testing, and validation from external
files or the MATLAB workspace. This flexibility
facilitates the integration of experimental data and
supports robust model evaluation. In this study
input (20×5 matrix) named ip is added from
workspace. The tool allows the generation of a fuzzy
inference system (FIS) using methods such as grid
partitioning or subtractive clustering, based on the
structure and characteristics of the input data.
Study used grid portioning.

The training panel enables the specification of
important parameters, including optimization
method (such as hybrid, which combines least
squares and backpropagation), error tolerance, and
the number of training epochs. These settings
determine the efficiency and accuracy of model
learning. The tool provides options to test the
trained FIS against training, testing, or checking
data and visualize the results.
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A plotting area is available for graphical evaluation
of model performance. The interface displays a
summary of the current ANFIS structure, including
the number of inputs, outputs, and the number of
membership functions (MFs) assigned to each input.

Figure 2(a): ANFIS Training Model

Figure 2(b) displays a scatter plot titled "Training
Data (ooo)", representing the distribution of output
values corresponding to different data set indices in
the training set. Each point in the plot corresponds
to a unique sample, with the x-axis ("data set
index") denoting the index of each data point in the
training set, and the y-axis ("Output") specifying the
measured or computed outcome for that data point.
The output values vary across the dataset, spanning
a range from approximately 70 to just above 110.
This spread indicates inherent variability in the
target measurements or predictions the model is
expected to learn. The transparent background for
the plotting area against the gray surrounding
highlights the data points clearly, with open blue
circles used for representation to avoid overlap and
aid in visibility even with closely spaced points.

No obvious linear or non-linear pattern is visually
apparent in the scatter of outputs, suggesting that
the relationship between the data set index and the
output is likely non-sequential or influenced by
features not represented in this index plot. This
characteristic underlines the importance of
considering additional explanatory variables and
employing robust modeling techniques to uncover
the underlying patterns in the data.

Such an initial visualization provides valuable insight
into the nature of the training data, helps identify
possible anomalies or outliers, and assists in guiding
the next steps of data preprocessing.

Figure 2(b): ANFIS Training data visualization

Figure 2(c) presents the training error progression
across the first three epochs of the model training
phase. Each point on the scatter plot represents the
measured training error at the end of the
corresponding epoch. The results demonstrate that
the training error remains consistently low and
stable, with only slight variation across the epochs
observed. The minimal fluctuation in training error
and the maintenance of a low error magnitude are
clear indicators of effective and well-converged
training. This steady trend suggests that the chosen
training strategy—encompassing model architecture,
data preprocessing, and hyperparameter settings—
has led to rapid learning and early stabilization. The
model effectively captures the underlying patterns
of the training data without signs of overfitting or
underfitting.

Such consistently low error values so early in the
training process reflect both a suitable model design
and high representational quality of the input
features. This positive outcome validates the
training configuration and demonstrates the model’s
reliable performance, while figure 3 shows
implication framework for sugeno-fuzzy.

Figure 2(c): ANFIS Training error progression
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Figure 3(a): Structure of the ANFIS Model

Figure 3(b): Fuzzy Inference System Rule Viewer,
3(c): 3D Surface Plot of Fuzzy Inference System

The table (Table 5) compares results from the
ANFIS (Adaptive Neuro-Fuzzy Inference System)
with GA (Genetic Algorithm) optimization for
predicting and optimizing compressive strength in a
3D printing context. The highest optimized
compressive strength of 148.53 MPa was achieved
using a Linear-Trimf membership function with a
nozzle temperature of 215.25°C, infill density of
65%, a layer height of 0.25 mm, and a printing
speed of 53.25 mm/s. Other configurations yielded
slightly lower compressive strengths, ranging mostly
between 145.4 and 147.5 MPa. The results show
how different membership functions and optimized
process parameters via GA affect the resulting
compressive strength predictions of the ANFIS
model.

This comparative analysis demonstrates the
effectiveness of combining ANFIS with GA
optimization to tune 3D printing parameters, leading
to improved material compressive strength
predictions and potentially optimized printing
performance.

Table 5: Comparing ANFIS and GA-Optimized
results: a comparative analysis

The figure 2(d) presents a line graph illustrating the
evolution of compressive strength across
generations in an optimization process. The x-axis
represents the "Generation," while the y-axis shows
"Compressive Strength." Two lines are plotted: the
green line indicates the "Best Strength" per
generation, and the black line shows the "Mean
Strength." Both metrics rapidly increase in early
generations and stabilize near a compressive
strength of 148.53. The chart’s title highlights the
final best and mean strengths achieved, both valued
at 148.53. The results suggest successful
convergence of the optimization toward the
maximum compressive strength.

Figure 3(c): Assimilation results of GA-ANFIS for
compressive strength optimization.
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3.3 Validation study of Compressive Strength
Predictions

Table 6 presents a comparative analysis of the
output results obtained using different optimization
tools for predicting and improving the compressive
strength of the fabricated samples. The table
compares the performance of aUniversal Testing
Machine (UTM) with that of ahybrid Genetic
Algorithm–Adaptive Neuro-Fuzzy Inference System
(GA-ANFIS) optimization approach. From the table,
it is observed that the UTM-based experimental
analysis, carried out at a process temperature of220
℃ , an infill density of85%, a layer height of0.25
mm, and a printing speed of40 mm/s, resulted in a
measured compressive strength of106.25 MPa. This
value represents the baseline strength without the
application of any intelligent optimization
techniques.

In contrast, the GA-ANFIS approach explored
different parametric settings, suggesting an
optimized configuration of 224.25℃  temperature,
88% infill density, 0.15 mm layer height, and a
higher printing speed of 55 mm/s. These optimized
parameters led to apredicted and experimentally
confirmed compressive strength of 148.53 MPa,
which represents a substantial improvement over
the UTM baseline results. Specifically, an
improvement of 39.78% in compressive strength is
achieved through the intelligent optimization
procedure.

Table 6: Comparative output result obtained by
different optimization tool

4. Conclusion of the Study

The present study demonstrates the crucial role of
process parameter optimization in enhancing the
compressive strength of additively manufactured
specimens. Baseline experimental testing using a
Universal Testing Machine (UTM) yielded a
compressive strength of106.25 MPaunder
conventional process settings. However,
optimization using the hybridGenetic Algorithm–
Adaptive Neuro-Fuzzy Inference System (GA-ANFIS)

strategy resulted in a significantly improved
strength of 148.53 MPa, corresponding to a39.78%
enhancement compared to the UTM baseline.
Among the studied input factors,layer height and
infill density exhibited the most pronounced
influence on compressive strength. A reduction in
layer height from 0.25 mm to 0.15 mm contributed
to better interlayer bonding and reduced void
formation, directly improving load-bearing capacity.
Similarly, increasing the infill density from 85% to
88% increased the solid content within the
structure, thereby enhancing its strength. Although
processing temperature and printing speed also
affected performance, their impact was secondary in
comparison to layer height and infill density.
Overall, the results establish that process
parameters cannot be optimized independently;
rather, their combined synergistic effect dictates the
final mechanical performance. The GA-ANFIS model
efficiently captured these complex nonlinear
interactions, thereby providing an accurate
predictive tool for optimization.

This study conclusively highlights that intelligent
hybrid optimization approaches can significantly
improve structural performance in additive
manufacturing while minimizing experimental trials.
Future research can further extend these
methodologies to optimize other critical properties

Data Availability Statements

All data generated or analyzed during this study are
provided in the manuscript.
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