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This study investigates the optimization of tribological performance in Fused Deposition Modeling
(FDM) fabricated components by focusing on the specific wear rate (SWR) of Polylactic Acid (PLA)
specimens. A total of 30 samples were fabricated using a MakerBot Method X 3D printer following
ASTM G99 standards, considering four key process parameters: nozzle temperature, infill density,
layer height, and printing speed. Wear behavior was evaluated using a Pin-on-Disc apparatus under
dry sliding conditions. To predict and minimize SWR, a hybrid GA-ANFIS (Genetic Algorithm–
Adaptive Neuro-Fuzzy Inference System) model was employed. The ANFIS framework effectively
captured nonlinear relationships among input variables, while GA optimized membership functions to
improve prediction accuracy. Experimental results demonstrated that nozzle temperature and layer
height had the most significant influence on SWR. The optimized parameter combination achieved a
minimum SWR of 8.26 × 10⁻⁴ mm³/N•m, representing a 25.12% reduction compared to non-
optimized settings. The proposed hybrid approach proved to be a robust tool for process parameter
optimization, enabling enhanced wear resistance and mechanical integrity in FDM-printed parts.
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1. Introduction
FDM is a three-dimensional printing (3D printing)
technique which involves the process of building
objects layer by layer, using a selected material,
until the desired structure obtained. 3D printing is a
cutting-edge manufacturing technology that
constructs parts through a layer-by-layer deposition
process. Fused Deposition Modeling, which uses
thermoplastic filaments to construct things, is one
of the most popular 3D printing methods. When
compared to other quick prototyping in 3D-printed
objects, a lot of work has been done to investigate
tribological parameters, such as

wear resistance, wear strength, and coefficient of
friction, which are crucial in evaluating the longevity
and performance of a printed item. To improve wear
resistance and other mechanical features, a large
number of scientists and researchers from around
the world have thoroughly examined the process
factors related to FDM. To improve the wear
resistance and other mechanical qualities of printed
parts, a large number of scientists and researchers
from across the world have thoroughly examined
the process factors related to FDM. Singh et al.,
(2024) utilized Graphene- reinforced PLA (PLA-nGr)
composite used to investigate the influence of
critical FDM printing parameters—nozzle
temperature, layer thickness, printing speed, and
infill density on the wear performance of 3D-printed
specimens. Using conventional pin-on-disc testing, a
Taguchi L9 design of trials was used to methodically
examine each factor's impact on wear rate and
coefficient of friction. According to ANOVA results,
the most important factors influencing wear
resistance were nozzle temperature and layer
thickness, with printing speed and infill density
coming in second and third, respectively. When
compared to prints that were not optimized, the
wear loss was significantly reduced by using the
ideal settings of high nozzle temperature, medium
layer thickness, moderate speed, and moderate
density. Phogat et al., (2022) conducted an
extensive study on optimizing the parameters of the
Fused Deposition Modeling (FDM) process,
specifically raster angle, infill density, extrusion
temperature, extrusion speed, and wall thickness,
by utilizing a hybrid Genetic Algorithm-Artificial
Neural Network (GA-ANN) approach. The research
evaluated the wear resistance of FDM-printed
samples made from PLA, ABS, and multi-material
composites.

The findings revealed that PLA exhibited the lowest
wear rate of 0.155371 mm³/m under the best
conditions, which included a raster angle of 89.26°
and an infill density of 95.21%. Of all the
parameters analyzed, infill density and extrusion
temperature had the most significant impact on
wear performance. The GA-ANN model showed a
high level of predictive accuracy (R = 0.9608),
demonstrating its effectiveness in optimizing
process settings to reduce wear in FDM- printed
materials. Wang et al., (2024) focused on assessing
the mechanical and tribological characteristics of
polyamide (PA), particularly Nylon-based materials,
fabricated using FDM. The study identified nozzle
temperature, print speed, layer height, infill density,
and build orientation as critical parameters.
Enhanced mechanical properties—including tensile
strength, flexural modulus, and impact resistance—
were associated with higher nozzle temperatures
(≥250 °C) and reduced layer heights (0.1–0.2 mm),
attributed to improved interlayer bonding. The
research emphasized the importance of precise
process control and noted that material
modifications and

post-processing could further extend the application
potential of PA parts in automotive, aerospace, and
industrial sectors.

The tribological characteristics of 3D-printed items
are affected by various important factors such as
layer thickness, infill density, print speed, infill
pattern, extrusion temperature, and nozzle
diameter, which determine the material's overall
performance. Current studies have not thoroughly
investigated the interactions among these variables,
indicating a need for a deeper understanding to
optimize the FDM process effectively. Although
traditional optimization techniques like Design of
Experiments (DOE), Response Surface Methodology
(RSM), and Taguchi's technique are frequently
applied, advanced computational methods, including
Machine Learning (ML), Artificial Intelligence (AI),
and genetic algorithms, have not been fully
employed for FDM optimization. The incorporation of
AI-based models, particularly for real-time process
adjustments and automating the optimization
process across varying material types and intricate
geometries, remains largely underexplored.
Furthermore, the integration of real-time monitoring
and adaptive algorithms into the optimization
framework is a crucial area for ongoing research.
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In particular, the hybrid GA-ANFIS system enables a
systematic investigation of the intricate interactions
between essential FDM process parameters—such
as nozzle temperature, infill density, layer height,
and printing speed—and their impact on wear
resistance. By optimizing performance at the
interface between material and process, the
suggested approach aids in enhancing the
capabilities of additive manufacturing, ensuring
improved component durability and production
efficiency.

2. Materials and Methods
In today's world, there are various types of
materials available for 3D printing, such as
Acrylonitrile Butadiene Styrene (ABS), Nylon,
Polycarbonate, High-Density Polyethylene (HDPE),
High Impact Polystyrene (HIPS), and Polylactic Acid
(PLA). Of these, PLA has become a popular choice
for 3D printing as a result of its lower melting point
(150–160 °C), which leads to lower energy usage
during the printing process. PLA is a biodegradable
thermoplastic polyester characterized by a chemical
structure made up of repeating units of (C3 H4
O2)� or [–C(CH3)HC(=O)O–]�, where "n"
indicates the degree of polymerization.

Table 1: Material Properties
PLA Material properties

Specific Gravity(g/cm3) 1.2–1.4

Impact Strength (KJ/m2) 6.5–7.0

Tensile Strength(MPa) 55–60

Tensile Modulus (MPa) 3.2–3.5

Elongation at Break (%) 5.5–6.0

Softening Temperature (◦C) 50–55

2.1 Methods and Test Specimen Printing

The wear test specimens were produced using a
MakerBot Method X 3D printer in line with ASTM
G99 standards and then tested for wear resistance
using a Pin-on-Disc apparatus. The fabrication
process utilized the sophisticated MakerBot Method
X printer, illustrated in Figure 1(a). The primary
input factors for Fused Deposition Modeling (FDM),
such as nozzle temperature, infill density, layer
height, and print speed, are being adjusted to
enhance the wear resistance of the test samples. A
total of thirty wear test specimens were produced
based on the FDM parameter matrix presented in
Table 2, with the experimental plan outlined in
Tables 3, and the wear testing specimens illustrated
in Figure 1(b).

The specimens were designed using AUTOCAD
software, and the resulting .dxf AutoCAD file was
converted into a stereolithographic (STL) file format.
This generated STL file was then uploaded to the 3D
printer's software to define the tool path and set all
process parameters according to the experimental
design matrix for the fabrication of parts. These
input parameters were modified at three different
levels while other parameters remained unchanged.
To reduce the number of experimental runs, a 2k
factorial design was utilized through Design Expert
13 software.

Figure 1(a): MakerBot Method X printer

Figure 1(b): ASTM standard 3-D printed wear test
samples at various input parameters setting
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Table 2: FDM parameters matrix along with their
range
S no Parameter Unit Level

min(m-) -1 0 1 max(m+)

1 Nozzle Temp ℃ 200 205 210 215 220

2 Infill Density % 55 65 75 85 95

3 Layer Height mm 0.2 0.25 0.3 0.35 0.4

4 Printing Speed mm/s 40 50 60 70 80

Table 3: Experimentation design as per design of
experiment (DOE)

2.2 Pin-on-Disc Wear Testing and
Determination of Specific Wear Rate

The performance of the developed PLA part test
specimens in dry sliding wear was evaluated using a
pin-on-disc apparatus. Cylindrical samples,
measuring 30 mm in diameter and 3 mm in
thickness, were produced using a 3-D printer. The
wear tests were performed under dry sliding
conditions over a distance of 3000 m, with a sliding
speed set at 1.5 m/s and a load applied of 25N. The
specific wear rate (SWR) for the samples was
determined through a structured method based on
the parameters of the wear test and the data on
material loss. The diameter of the wear track (d)
was established at 0.1 meters, and the tests were
carried out at a rotational speed (N) of 500 rpm for
a period (t) of 10 minutes.

2.3 GA-ANFIS Approach for Process
Parameters Training and Optimization

In this study, a hybrid modeling approach called GA-
ANFIS was employed to enhance process
parameters with the goal of minimizing the specific
wear rate (SWR) of PLA (Polylactic Acid) parts. This
method integrates two intelligent systems: ANFIS
(Adaptive Neuro-Fuzzy Inference System), which
fuses neural networks with fuzzy logic to identify
complex relationships between inputs and outputs
derived from data, and the Genetic Algorithm (GA),
an optimization method inspired by natural
selection. ANFIS is particularly useful for modeling
nonlinear systems where traditional techniques may
fall short. It processes information through five
distinct stages: converting input values into fuzzy
sets, utilizing fuzzy rules, evaluating rule strengths,
amalgamating outputs, and producing a final crisp
numerical result.

In this scenario, the ANFIS model was trained using
experimental data with four key FDM process
parameters as inputs: nozzle temperature, layer
height, infill density, and print speed. These
parameters significantly influence the tribological
properties of the printed PLA components. After the
initial training, the Genetic Algorithm optimized the
internal configurations of the ANFIS model, which
included the shapes and positions of the
membership functions and the weights assigned to
the fuzzy rules. This optimization helps in avoiding
local minima and enhances the model's prediction
accuracy. As a result, the GA-ANFIS model
effectively forecasted the specific wear rate of PLA
components and identified the optimal combination
of process parameters for improved wear
resistance. This validates the GA-ANFIS method's
effectiveness as a reliable tool for optimizing
processes and predicting performance in FDM-based
additive manufacturing.

2.4 Experimental Data Training and Results
through GA-ANFIS Hybrid Modelling

The Adaptive Neuro-Fuzzy Inference System
(ANFIS) stands out among other hybrid approaches
that combine neural networks and fuzzy logic
frameworks. It gives smooth interpolation due to its
fuzzy control (FC) capabilities and ensures model
adaptability and learning efficiency through neural
network-based backpropagation.
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For training purposes, a dataset comprising 30
samples was loaded from the MATLAB workspace in
.mat format, structured as a 30×4 matrix. This
dataset includes three input parameters—Nozzle
temperature (°C), infill density (%), and layer
Height and printing speed (mm/s)—along with one
output variable UCS, A Sugeno-type fuzzy inference
system (FIS) was initially generated using the grid
partitioning method. Each input variable was
assigned three linear-form membership functions
(MFs), with default configuration settings such as
zero tolerance, hybrid optimization (a combination
of least squares and backpropagation), and a rule
base consisting of 27 fuzzy rules and training was
performed over three iterations. To explore the
impact of different membership functions on system
performance, various FIS models were created
using alternative MFs. ANFIS supports 11 built-in
membership functions, and allows integration of
custom MFs.

3. Results and Discussion
The wear testing specimens were fabricated in
accordance with ASTM G99 standards, utilizing 30
unique combinations of four key process
parameters. These combinations were
systematically determined through the Face-
Centered Central Composite Design (FCCCD)
methodology. Specific wear rate measurements
conducted for each specimen, and the final value
was derived by averaging the results from three
individual tests. Table 4 summarizes the input
parameters and the corresponding output responses
(SWR).

Table 4: Wear analysis results at different
parametric combinations

3.1 Experimental Data Learning and Training
through Developing GA-ANFIS Model

The Adaptive Neuro-Fuzzy Inference System
(ANFIS) stands out among other hybrid approaches
that combine neural networks and fuzzy logic
frameworks. It gives smooth interpolation due to its
fuzzy control (FC) capabilities and ensures model
adaptability and learning efficiency through neural
network-based backpropagation. For training
purposes, a dataset comprising 30 samples was
loaded from the MATLAB workspace in .mat format,
structured as a 30×4 matrix. This dataset includes
three input parameters—Nozzle temperature (°C),
infill density (%), and layer Height and printing
speed (mm/s)—along with one output variable SWR,
A Sugeno-type fuzzy inference system (FIS) was
initially generated using the grid partitioning
method. Each input variable was assigned three
linear-form membership functions (MFs), with
default configuration settings such as zero
tolerance, hybrid optimization (a combination of
least squares and backpropagation), and a rule base
consisting of 27 fuzzy rules and training was
performed over three iterations. To explore the
impact of different membership functions on system
performance, various FIS models were created
using alternative MFs. ANFIS supports 11 built-in
membership functions, and allows integration of
custom MFs. Each modified FIS configuration then
saved in a separate file in the working directory and
subsequently incorporated into a Genetic Algorithm
(GA) for optimizing process parameters. Figure
2(a) shows the predicted output from the FIS with
the actual training data. The blue circular markers
represent the experimental training data, while the
red stars indicate the FIS model output. A
significant deviation between these two sets is
clearly visible, highlighting that the model did not
achieve a perfect fit. Figure 2(b) depicts the
training error progression of the ANFIS model over
three epochs. The Y-axis represents the training
error, while the X-axis denotes the number of
epochs. This minimal and nearly constant error
suggests that the chosen number of epochs was
sufficient for learning the underlying patterns in the
data without overfitting. Figure 2(c) illustrates the
convergence behavior of the Genetic Algorithm (GA)
used to optimize process parameters for minimum
SWR.
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While, Figure 3 represent the Implication
framework for Sugeno-fuzzy network.

Figure 2: (a) Training error vs epochs plot, (b)
training-FIS output demonstration, (c) assimilation
results of GA-ANFS for tensile strength optimization

Figure 3: Implication framework for Sugeno-fuzzy:
(a) representation of ANFIS construction, (b)
surface plot of ANFIS response, (c) training
schedule representation of ANFIS training system.

Table 5 presents the comparative analysis of
various ANFIS models configured with different
types of membership functions (MFs), optimized
using GA. Each model was trained using the Grid
Partitioning method and the Hybrid learning
algorithm, with a consistent training error of

0.086 across all configurations during Epoch 3.
Among the various membership functions, the trimf-
linear ANFIS model demonstrated superior
performance in predicting the SWR. Achieved SWR
value of 8.26 (mm3 /Nm)(10⁻4) with optimized
parameters: Nozzle Temperature = 210°C, Infill
Density = 75%, Layer Height = 0.3 mm and Speed
= 40 mm/s. Gauss2mf (Gaussian Membership
Function - Type 2) achieved a SWR of 8.27 (mm3
/Nm)(10⁻4), very close to trimf, demonstrated high
predictive capability with smooth, differentiable MFs.

Table 5: Different used ANFIS MFs and GA obtained
optimize results

3.2 Validation of Wear Resistance Predictions

Table 6 compile the comparative analysis to
evaluate the effectiveness of an optimization
technique (GA-ANFIS) in reducing the Specific Wear
Rate (SWR) of 3D-printed components. The table
compares the specific wear rate optimization using
two methods—pin on disc testing and a hybrid
genetic algorithm-artificial neural network (GA-
ANFIS) approach—based on input factors:
temperature (℃), infill density (%), speed (mm/s),
and layer height (mm). It includes predicted SWR
(in 10⁻4 mm³/nm), experimental SWR (in 10⁻⁴
mm³/nm), and percentage accuracy. The best
experimental sample was fabricated under
conventional conditions using a nozzle temperature
of 220 °C, 65% infill density, 0.25 mm layer height,
and a print speed of 60 mm/s, which resulted in an
experimental SWR of 11.03 × 10⁻⁴ mm³/Nm. The
GA-ANFIS optimized settings—210 °C nozzle
temperature, 75% infill density, 0.30 mm layer
height, and 40 mm/s print speed—produced a
significantly reduced SWR of 8.26 × 10⁻⁴ mm³/Nm,
amounting to a 25.12% reduction in wear rate.
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The results highlight the effectiveness of GA-ANFIS
in identifying optimal process parameters to
enhance the tribological performance of 3D-printed
parts. These findings are particularly valuable for
applications where component durability and wear
resistance are critical.

Table 6: Detailed output results obtained via
different optimization tools

4. Conclusions
1. This study comprehensively investigated the wear
characteristics of FDM-fabricated PLA specimens by
optimizing key process parameters—nozzle
temperature, infill density, layer height and printing
speed using a hybrid artificial intelligence The
combined use of Genetic Algorithm (GA), Adaptive
Neuro-Fuzzy Inference System (ANFIS),
demonstrated high predictive accuracy and effective
minimization of the specific wear rate. The principal
findings are The integration of GA and ANFIS
techniques proved highly effective in refining FDM
process parameters, leading to substantial
enhancements in tribological performance. The
optimized configuration achieved a minimal specific
wear rate of 8.26 × 10⁻⁴ mm³/Nm, with reduction
in SWR by 25.12 %, experimental validation results
yielding an excellent prediction accuracy.

2. The results highlighted that nozzle temperature is
the dominant factors affecting wear resistance,
printing speed also demonstrated an appreciable
influence. Layer height have comparatively smaller
impacts on specific wear rate. The infill density
variable shows the least impact.

3. The results affirm that the hybrid GA-ANFIS
model significantly surpassed traditional
optimization techniques in modeling complex,
nonlinear interactions within the FDM process. This
approach not only minimized the need for extensive
experimental work but also provided a robust
framework for achieving superior mechanical
performance with reduced material and time
expenditure.

These conclusions validate the application of
advanced hybrid optimization techniques in
addressing challenges associated with FDM
processes, paving the way for improved material
performance and broader industrial adoption.
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